Jan 19, 2022When Is The Most Effective Time To Exercise?
Scientists still do not know why the timing of exercise produces different effects. To gain a better understanding, an international team of scientists recently carried out the most comprehensive study to date of exercise performed at different times of the day.
The findings were recently published in the journal ‘Cell Metabolism’.
Their research has shown how different health-promoting signaling molecules are produced by the body in an organ-specific manner following exercise depending on the time of day. These signals have a broad impact on health, influencing sleep, memory, exercise performance and metabolic homeostasis.
“A better understanding of how exercise affects the body at different times of day might help us to maximize the benefits of exercise for people at risk of diseases, such as obesity and type 2 diabetes,” said Professor Juleen R. Zierath from Karolinska Institutet and the Novo Nordisk Foundation Centre for Basic Metabolic Research (CBMR) at the University of Copenhagen.
Almost all cells regulate their biological processes over a 24-hour period, otherwise called a circadian rhythm. This means that the sensitivity of different tissues to the effects of exercise changes depending on the time of day. Earlier research has confirmed that exercise timing according to our circadian rhythm can optimize the health-promoting effects of exercise.
The team of international scientists wanted a more detailed understanding of this effect, so they carried out a range of experiments on mice that exercised either in the early morning or the late evening. Blood samples and different tissues, including brain, heart, muscle, liver, and fat were collected and analyzed by mass spectrometry.
This allowed the scientists to detect hundreds of different metabolites and hormone signaling molecules in each tissue, and to monitor how they were changed by exercising at different times of the day.
The result is an ‘Atlas of Exercise Metabolism’ – a comprehensive map of exercise-induced signaling molecules present in different tissues following exercise at different times of the day.